
EXPERIMENT NO.8

OBJECT: To determine the high resistance by method of leakage of charge using a Ballistic galvanometer

<u>APPARTUS:</u> A Ballistics galvanometer, a battery, two rheostats, a standard capacitor, stop watch, keys and a resistor whose resistance is to be determined.

DIAGRAM

EXPERIMENTAL SETUP

FORMULA: The resistance R of the given resistor is given by

$$R = \begin{array}{cccc} & t & \\ R = & & ohm \\ & C.log_e(\theta_0/\theta_t) & \end{array}$$

Where,

t= time for which the charge on the capacitor is allowed to leak through the high resistance R

 θ_0 = first throw of the spot of light when the fully charged capacitor is discharged through the Ballistic Galvanometer.

 θ_t = first throw of the spot of light when the fully charged capacitor is first discharged through the resistance R for a time t and then discharged through the Ballistics Galvanometer.

C= capacity of the given capacitor in farads.

PROCEDUR:

- 1. The spot of light of the Galvanometer is adjusted at zero of the scale
- 2. The connections are made as shown in the figure .Key k_1 is inserted and key k_3 is pressed. It will charge the condenser.
- 3. The key k_3 is released and k_4 is pressed. The first throw θ_0 is noted. The value of throw θ_0 is adjusted between 30 and 50 divisions with help of rheostat.
- 4. With the help of the damping key the motion of the spot is stopped. Key k_3 is pressed again to charge the condenser
- 5. Key k_1 is removed and k_2 is closed. Key k_3 is pressed for a time t second, say 10 second. k_4 is pressed after releasing k_3 . The first throw θ_t is noted.

- 6. For the same value of θ_0 , θ_t is observed for two more values of t.
- 7. For a different set, the value of θ_0 is changed by varying the resistance of the rheostat and θ_t is observed for three different values of t.

OBSERVATIONS:

S.No.	Initial throw in B.G. θ ₀ (degree)	Leakage time t (sec)	Throw θ_t (degree)	θ_0/θ_t	$\log_{e}(\theta_0/\theta_t)$	$t/log_{e}(\theta_{0}/\theta_{t})$ (sec)
1 2						
1						
$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$						

Mean $t/log_e(\theta_0/\theta_t) = (sec)$

\triangle	OTIT		
. A I	<i>a</i> '		• •
CAL	\sim UL	/ I I	σ

C= (μF) ; $t/log_e(\theta 0/\theta t)$ = (sec) ; R= (Ω)

RESULT:

Resistance of the given resistor=..... Ω

PRECAUTION:

- 1. The Galvanometer coil should be free to rotate.
- 2. Damping key should be pressed when the spot is crossing zero of the scale.
- 3. Both the lower terminals of the high resistance rheostat are to be connected.

4.	Charging in step5)	of capacito	or(as in step	2)is essentia	al before tak	ing reading	g of θ_t (as